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Abstract— Approximate computing can decrease the design complexity with an increase  in performance  and power efficiency  for error  resilient applications. This brief deals with a new design approach for approxima- tion  of multipliers.  The partial  products  of the  multiplier  are  altered  to introduce varying  probability  terms. Logic complexity  of approximation is varied  for the accumulation  of altered partial products based on their probability.  The  proposed  approximation  is  utilized  in  two  variants  of
16-bit multipliers.  Synthesis results  reveal  that two proposed multipliers achieve  power  savings  of  72%  and  38%,  respectively,  compared  to  an exact  multiplier.  They  have  better  precision  when  compared  to  existing approximate   multipliers.   Mean   relative   error   figures   are   as   low   as
7.6%  and  0.02%  for  the  proposed  approximate  multipliers,  which  are better than the previous works. Performance of the proposed multipliers is  evaluated  with  an  image  processing  application,  where  one  of  the proposed  models  achieves  the  highest  peak  signal  to noise  ratio.

Index  Terms— Approximate  computing,  error   analysis,   low error,  low power,  multipliers.

I.  INTRODUCTION
In applications like multimedia signal processing and data mining which  can  tolerate  error,  exact  computing  units  are  not  always necessary. They can be replaced with their approximate counterparts. Research  on  approximate  computing  for  error  tolerant  applications is  on  the  rise.  Adders  and  multipliers  form  the  key  components in  these  applications.  In  [1],  approximate  full  adders  are  proposed at  transistor  level  and  they  are  utilized  in  digital  signal  processing applications. Their proposed full adders are used in accumulation of partial products in multipliers.
To reduce hardware complexity of multipliers, truncation is widely employed in fixed-width multiplier designs. Then a constant or vari- able correction term is added to compensate for the quantization error introduced  by the  truncated  part  [2],  [3].  Approximation  techniques in  multipliers  focus  on  accumulation  of  partial  products,  which  is crucial  in  terms  of  power  consumption.  Broken  array  multiplier is  implemented  in  [4],  where  the  least  significant  bits  of  inputs are  truncated,  while  forming  partial  products  to  reduce  hardware complexity.  The proposed  multiplier in  [4]  saves  few  adder  circuits in partial product  accumulation.
In [5], two designs of approximate 4-2 compressors are presented and used  in partial product  reduction  tree of four  variants of 8 ×  8
Dadda multiplier. The major drawback of the proposed compressors
in  [5]  is  that  they  give  nonzero  output  for  zero  valued  inputs, which  largely  affects  the  mean  relative  error  (MRE)  as  discussed later.  The  approximate  design  proposed  in  this  brief  overcomes  the existing  drawback.  This  leads  to  better  precision.  In  static  segment multiplier  (SSM)  proposed  in  [6],  m-bit  segments  are  derived  from n-bit  operands  based  on  leading  1  bit  of  the  operands.  Then,  m
×  m  multiplication  is  performed  instead  of  n  ×  n  multiplication,
where m<n. Partial product perforation (PPP) multiplier in [7] omits

k successive partial products starting from jth position, where j ∈ [0, n-1]  and  k  ∈  [1,  min(n-j,  n-1)]  of  a  n-bit  multiplier.  In  [8],  2  ×  2 approximate multiplier based on modifying an entry in the Karnaugh map is proposed and used as a building block to construct 4 × 4 and
8 × 8 multipliers. In [9], inaccurate counter design has been proposed
for use in power efficient Wallace tree multiplier. A new approximate adder  is  presented  in  [10]  which  is  utilized  for  partial  product accumulation  of  the  multiplier.  For  16-bit  approximate  multiplier in  [10],  26%  of  reduction  in  power  is  accomplished  compared  to exact multiplier. Approximation of 8-bit Wallace tree multiplier due to voltage over-scaling (VOS) is discussed in [11]. Lowering supply voltage creates paths failing to meet delay constraints leading to error. Previous  works  on  logic  complexity  reduction  focus  on  straight- forward  application  of  approximate  adders  and  compressors  to  the partial  products.  In  this  brief,  the  partial  products  are  altered  to introduce  terms  with  different  probabilities.  Probability  statistics  of the  altered  partial  products  are  analyzed,  which  is  followed  by systematic  approximation.  Simplified  arithmetic  units  (half-adder, full-adder,  and  4-2  compressor)  are  proposed  for  approximation. The  arithmetic  units  are  not  only  reduced  in  complexity,  but  care is  also  taken  that  error  value  is  maintained  low.  While  systemic approximation  helps  in  achieving  better  accuracy,   reduced  logic complexity of approximate arithmetic units consumes less power and area.  The  proposed  multipliers  outperforms  the  existing  multiplier designs in terms of area, power, and error, and achieves better peak signal to noise ratio (PSNR) values in image processing application. Error  distance  (ED)  can  be  defined  as  the  arithmetic  distance between  a  correct  output  and  approximate  output  for  a given  input. In [12], approximate adders are evaluated and normalized ED (NED) is proposed as nearly invariant metric independent  of the size of the approximate  circuit.  Also,  traditional  error  analysis,  MRE  is  found
for existing and proposed multiplier designs.
The rest of this brief is organized as follows. Section II details the proposed  architecture.  Section  III  provides  extensive  result  analysis of design and error metrics of the proposed and existing approximate multipliers.  The  proposed  multipliers  are  utilized  in  image  process- ing  application  and  results  are  provided  in  Section  IV.  Section  V concludes this brief.

II.  PROPOSED ARCHITECTURE

Implementation of multiplier comprises three steps: generation of partial products, partial products reduction tree, and finally, a vector merge addition to produce final product from the sum and carry rows generated from the reduction tree. Second step consumes more power. In this brief, approximation is applied in reduction tree stage.
A 8-bit unsigned1  multiplier is used for illustration to describe the
proposed method in approximation of multipliers. Consider two 8-bit
unsigned  input  operands  α  =   7

αm2m   and  β  =   7

βn2n.
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operation between the bits of αm  and βn.

1The  proposed  approximate  technique  can  be  applied  to  signed  multipli- cation  including  Booth  multipliers  as  well,  except  it  is  not  applied  to  sign extension  bits.
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Fig.  1.      Transformation  of  generated  partial  products  into  altered  partial products.
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From  statistical  point  of  view,  the  partial  product  am,n   has  a probability  of  1/4  of  being  1.  In  the  columns  containing  more than  three  partial  products,  the  partial  products  am,n   and  an,m   are combined to form propogate and generate signals as given in (1). The resulting propogate and generate signals form altered partial products pm,n  and  gm,n.  From column  3 with  weight  23  to  column  11  with
weight 211, the partial products am,n  and an,m  are replaced by altered
partial products  pm,n  and gm,n. The original and transformed partial
product matrices are shown in Fig. 1

pm,n  =  am,n  + an,m
gm,n  =  am,n  · an,m.                                   (1)

The  probability  of  the  altered  partial  product  gm,n   being  one  is
1/16, which is significantly lower than 1/4 of am,n. The probability
of altered partial  product  pm,n  being one is 1/16 + 3/16 + 3/16 =
7/16, which is higher than gm,n. These factors are considered, while
applying approximation to the altered partial product matrix.


A. Approximation of Altered Partial Products  gm,n
The accumulation of generate signals is done columnwise. As each element has a probability of 1/16 of being one, two elements being 1 in the same column even  decreases.  For example,  in a column with
4 generate  signals, probability of all numbers being 0 is (1 −  pr)4,
only one element being one is 4pr(1 − pr)3, the probability of two elements  being  one  in  the  column  is  6pr2(1 −  pr)2,  three  ones  is
4pr3(1− pr) and probability of all elements being 1 is pr4, where pr
is 1/16. The probability statistics for a number of generate elements
m  in each column are given in Table I.
Based on Table I, using OR gate in the accumulation of columnwise generate elements in the altered partial product matrix provides exact result in most of the cases. The probability of error (Perr ) while using OR gate for reduction of generate signals in each column is also listed in  Table  I.  As can  be  seen,  the  probability  of misprediction  is very low. As the number of generate signals increases, the error probability increases linearly. However, the value of error also rises. To prevent this, the maximum number of generate signals to be grouped by OR gate is kept at 4. For a column having m generate signals,  m/4   OR gates are used.

B. Approximation of Other Partial Products
The  accumulation  of  other  partial  products  with  probability  1/4 for am,n  and 7/16 for  pm,n  uses approximate circuits. Approximate half-adder,  full-adder,  and  4-2  compressor  are  proposed  for  their accumulation. Carry and Sum are two outputs of these approximate circuits. Since Carry has higher weight of binary bit, error in Carry bit will contribute more by producing  error difference of two in the output.  Approximation  is  handled  in  such  a  way  that  the  absolute
difference  between  actual  output  and  approximate  output  is  always maintained as one. Hence Carry  outputs are approximated only for the cases, where  Sum  is approximated.
In  adders  and  compressors,  XOR  gates  tend  to  contribute  to  high area  and  delay.  For  approximating  half-adder,  XOR  gate  of  Sum  is replaced with OR  gate as given in (2). This results in one error in the Sum computation as seen in the truth table of approximate half-adder in Table II. A tick mark denotes that approximate output matches with correct output and cross mark denotes mismatch

Sum  =  x1 + x2
Carry  =  x1 · x2.                                     (2)

In  the  approximation  of  full-adder,  one  of  the  two  XOR  gates  is replaced with OR  gate in Sum calculation. This results in error in last two cases out of eight cases. Carry is modified as in (3) introducing one  error.  This  provides  more  simplification,  while  maintaining  the difference between original and approximate value as one. The truth table of approximate full-adder is given in Table III

W  =  (x1 + x2)
Sum  =  W ⊕ x3
Carry  =  W · x3.                                       (3)

Two  approximate  4-2 compressors  in [5] produce  nonzero  output even for the cases where all inputs are zero. This results in high ED and high  degree  of precision  loss especially in cases  of zeros in all bits or in most  significant  parts of the reduction  tree. The proposed
4-2 compressor overcomes this drawback.
In 4-2 compressor, three bits are required for the output only when all the four  inputs are 1,  which  happens  only  once  out  of 16  cases. This  property  is  taken  to  eliminate  one  of  the  three  output  bits  in
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of  n-bit  multiplier,  whereas  in  Multiplier2,  approximate  circuits  are used in n − 1 least significant columns.


Fig. 2.    Reduction  of altered  partial  products.

4-2  compressor.  To  maintain  minimal  error  difference  as  one,  the output  “100"  (the  value  of  4)  for  four  inputs  being  one  has  to  be replaced  with  outputs  “11"  (the  value  of  3).  For  Sum  computation, one out of three  XOR  gates is replaced with  OR  gate. Also, to make the  Sum  corresponding to the case where all inputs are ones as one, an additional circuit x1 · x2 · x3 · x4 is added to the  Sum expression. This results in  error in five out  of 16  cases.  Carry  is simplified as in (4). The corresponding truth table is given in Table IV

W1  =  x1 · x2
W2  =  x3 · x4
Sum  =  (x1 ⊕ x2) + (x3 ⊕ x4) + W1 · W2
Carry  =  W1 + W2.                                                     (4)

Fig. 2 shows the reduction of altered partial product matrix of 8 ×
8 approximate multiplier. It requires two stages to produce sum and carry outputs for vector merge addition step. Four 2-input  OR  gates, four 3-input  OR  gates, and one 4-input  OR  gates are required for the reduction  of  generate  signals  from  columns  3  to  11.  The  resultant
signals  of  OR  gates  are  labeled  as  Gi  corresponding  to  the  column
i  with weight 2i . For reducing other partial products, 3 approximate
half-adders,  3 approximate full-adders, and 3 approximate compres- sors are required in the first stage to produce Sum and Carry signals, Si   and  Ci   corresponding  to  column  i.  The  elements  in  the  second stage are reduced using 1 approximate half-adder and 11 approximate
full-adders producing final two operands xi  and yi  to be fed to ripple carry adder for the final computation of the result.

C. Two Variants of Multipliers
Two variants of multipliers are proposed.  In the first case (Multi- plier1),  approximation  is  applied  in  all  columns  of  partial  products

III.  RESULTS AND DISCUSSION
All  approximate  multipliers  are  designed  for  n  =  16.  The  multi- pliers  are  implemented  in  Verilog  and  synthesized  using  Synopsys Design  Compiler  and  a  TSMC  65  nm  standard  cell  library  at  the typical  process  corner,  with  temperature  25  °C  and  supply  voltage
1  V.  From  the  Synopsys  dc  reports,  we  get  area,  delay,  dynamic
power  and  leakage  power.  Multiplier1  applies  approximation  in  all columns, whereas in Multiplier2, approximation is applied in 15 least significant columns during partial product reduction. For the proposed multipliers, the altered partial products are generated and compressed using  half-adder,  full-adder,  and  4-2  compressor  structures  to  form final   two   rows   of   partial   products.   The   efficiency   of   the   pro- posed multipliers is compared with existing approximate multipliers [5]–[8]. Inexact compressor design 2 of [5] is used to design compres- sor based multipliers ACM1, where all columns are approximated and ACM2,  where  only  15  least  significant  columns  are  approximated. SSM [6] for m = 12 and n = 16 is designed for implementation. PPP design discussed in [7] for  j  = 2, k = 2 is designed and implemented under  Dadda  tree  structure.  In  [8],  the  partial  product  matrix  of
16-bit   under   designed   multiplier   (UDM)   comprises   approximate
2  ×  2  partial  products  accumulated  together  with  exact  carry  save adders.  Exhaustive  error  analysis  of  the  approximate  multipliers  is done using MATLAB.
Exact  16-bit  multiplier  is  designed  using  Dadda  tree  structure.
Table V compares  all designs  in terms of area,  delay, power,  power delay  product  (PDP),  and  area  power  product  (APP).  NED  and MRE  of  the  approximate  multipliers  are  listed  in  Table  VI.  If  high approximation  can  be  tolerated  for  saving  more  power,  Multiplier1 and  ACM1  are  the  candidates  to  be  considered.  It  can  be  seen  that Multiplier1 has better APP, whereas ACM1 has better PDP. However, Multiplier1 has 64% lower NED and three orders of magnitude lower MRE,  compared  to  ACM1.  It  should  be  noted  that  high  values  of MRE for ACMs are due to nonzero output for inputs with all zeros.


TABLE VII
RANKING OF  APPROXIMATE MULTIPLIERS IN  TERMS OF  DESIGN AND ERROR METRICS













Fig. 3.    MRE distribution  of (a) Multiplier1  and (b) Multiplier2.


Multiplier2 offers 32% area savings and 38% power savings, over the exact  multiplier. ACM2 provides  22% and 30%  area and power savings, respectively. SSM has 19% area and 31% power savings over accurate  multiplier. Perforated multiplier has  6% and  12%  area and power  savings,  respectively.  UDM provides  19%  and 26%  area and power savings. Multiplier2 has one order of lower MRE than ACM2, two  orders  of  lower  MRE  than  UDM,  73%  lower  MRE  than  PPP, and 62% lower MRE than SSM. NED of Multiplier2 outperforms all approximate  multipliers  except  ACM2.  ACM2  exhibits  10%  lower NED  than  Multiplier2.  Multiplier2  produces  large  ED  relative  to ACM2. However,  lower MRE indicates that Multiplier2 has smaller relative error values.
Table  VII  gives   a  comprehensive   comparison   of   approximate multipliers to get an idea of tradeoff between design metrics and error metrics.  Multiplier1  delivers  the  lowest  APP;  Multiplier2  delivers the  lowest  MRE  value.  Overall,  Multiplier2  has  better  PDP,  APP, and  MRE over ACM2,  SSM, perforated  multiplier, and  UDM, with lower  NED  in  most  cases  as  well.  For  applications  where  high power  savings  are  desired  with  more  error  tolerance,  Multiplier1 can  be  used.  For  moderate  power  savings  with  better  performance, Multiplier2 is suggested.
MRE distribution of 16-bit versions of Multiplier1 and Multiplier2 is shown in Fig. 3. All possible outputs ranging from 0 to 655352  are categorized  into  255  intervals.  MRE  of  Multiplier2  is  significantly
low  at  higher   product   values,   as  exact  units   are  used  in  most significant part of the multiplier.

IV.  APPLICATION—IMAGE PROCESSING
Geometric  mean  filter  is  widely  used  in  image  processing  to reduce  Gaussian  noise  [13].  The  geometric  mean  filter  is  better  at preserving  edge  features  than  the  arithmetic  mean  filter.  Two  16- bits per pixel gray scale images with Gaussian noise are considered.
3  ×  3  mean  filter  is  used,  where  each  pixel  of  noisy  image  is
replaced with geometric mean of 3 ×  3 block of neighboring pixels centered  around  it.  The  algorithms  are  coded  and  implemented  in MATLAB.  Exact  and  approximate  16-bit  multipliers  are  used  to perform multiplication between 16-bit pixels. PSNR is used as figure

Fig.  4.      (a)  Input  image-1  with  Gaussian  noise.  Geometric  mean  filtered images  and  corresponding  PSNR  and  energy  savings  in  μJ  using  (b)  exact multiplier,  (c)  Multiplier1,  (d)  Multiplier2,  (e)  ACM1,  (f)  ACM2,  (g)  SSM, (h) PPP, (i) UDM, and (j) VOS.








Fig.  5.      (a)  Input  image-2  with  Gaussian  noise.  Geometric  mean  filtered images  and  corresponding  PSNR  and  energy  savings  in  μJ  using  (b)  exact multiplier,  (c)  Multiplier1,  (d)  Multiplier2,  (e)  ACM1,  (f)  ACM2,  (g)  SSM, (h) PPP, (i) UDM, and (j) VOS.


of  merit  to  assess  the  quality  of  approximate  multipliers.  PSNR  is based on mean-square error found between resulting image of exact multiplier  and  the  images  generated  from  approximate  multipliers. Energy  required  by  exact  and  approximate  multiplication  process while  performing  geometric  mean  filtering  of  the  images  is  found using Synopsys Primetime. Further, exact multiplier is voltage scaled from 1 to 0.85 V (VOS), and its impact on energy consumption and image quality is computed.
The  noisy  input  image  and  resultant  image  after  denoising  using exact  and approximate  multipliers, with their respective PSNRs and energy savings in μJ  are shown in Figs. 4 and 5, respectively. Energy required for exact multiplication process for image-1 and image-2 is
3.24  and  2.62  μJ ,  respectively.  Although  ACM1  has  better  energy savings compared to Multiplier1, Multiplier1 has significantly higher PSNR than ACM1. Multiplier2 shows the best PSNR among all the approximate designs. Multiplier2 has better energy savings, compared to ACM2, PPP, SSM, UDM, and VOS. The intensity of image-1 being mostly on the lower end of the histogram causes poor performance of ACM multipliers. As the switching activity impacts most significant part of the design in VOS, PSNR values are affected.

V.  CONCLUSION
In  this  brief,  to  propose  efficient  approximate  multipliers,  partial products of the multiplier are modified using generate and propagate signals.  Approximation  is  applied  using  simple  OR  gate  for  altered generate  partial  products.  Approximate  half-adder,  full-adder,  and
4-2  compressor  are  proposed  to  reduce  remaining  partial  products. Two variants of approximate multipliers are proposed, where approx- imation is applied in all n bits in Multiplier1 and only in n − 1 least significant  part  in  Multiplier2.  Multiplier1  and  Multiplier2  achieve significant reduction in area and power consumption compared with exact designs. With APP savings being 87% and 58% for Multiplier1 and Multiplier2 with respect to exact multipliers, they also outperform


in  APP  in  comparison  with  existing  approximate  designs.  They are  also  found  to  have  better  precision  when  compared  to  existing approximate multiplier designs. The proposed multiplier designs can be  used  in  applications  with  minimal  loss  in  output  quality  while saving significant power and area.
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